Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Environ Int ; 183: 108419, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38185045

ABSTRACT

Biological monitoring is one way to assess human exposure to contaminants. Blood and urine are often used as biological matrices, but hair is an innovative and effective tool for quantifying more biomarkers over a wider exposure window. In order to improve the use of hair in exposure assessment, this article identifies relevant compounds in the literature to investigate hair contamination. Statistical analysis was performed to correlate the physical-chemical properties of the relevant compounds and their concentration levels in hair. Phthalates, pyrethroids and organophosphate flame retardants were chosen for further study of the interpretation of hair measurements for exposure assessment. No significant correlation was found between the average concentration levels in the literature and the physical-chemical properties of the selected compounds. This work also explores the properties of hair and the analytical process that may impact the quantification of organic contaminants in hair. The sample preparation method (sampling, storage, washing) were also studied and adaptations were suggested to improve the existing methods.


Subject(s)
Biological Monitoring , Flame Retardants , Humans , Environmental Monitoring/methods , Organophosphates/analysis , Hair/chemistry , Flame Retardants/analysis
2.
Epidemiology ; 35(2): 185-195, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37934147

ABSTRACT

BACKGROUND: Hypospadias is a male genital tract defect for which an increase in prevalence has been documented over the last few decades. A role for environmental risk factors is suspected, including prenatal exposure to pesticides. OBJECTIVES: To study the risk of hypospadias in association with multiple pesticide measurements in meconium samples. METHODS: The Brittany Registry of Congenital Anomalies (France) conducted a case-control study between 2012 and 2018. Cases were hypospadias, ascertained by a pediatrician and a pediatric surgeon, excluding genetic conditions, following European Surveillance of Congenital Anomalies guidelines (N = 69). Controls (N = 135) were two male infants without congenital anomaly born after each case in the same maternity unit. Mothers in the maternity units completed a self-administered questionnaire, we collected medical data from hospital records, and medical staff collected meconium samples. We performed chemical analysis of 38 pesticides (parent compound and/or metabolite) by UHPLC/MS/MS following strict quality assurance/quality control criteria and blind to case-control status. We carried out logistic regression accounting for frequency-matching variables and major risk factors. RESULTS: Among the 38 pesticides measured, 16 (42%) were never detected in the meconium samples, 18 (47%) were in <5% of samples, and 4 (11%) in ≥5% of the samples. We observed an association between the detection of fenitrothion in meconium and the risk of hypospadias (OR = 2.6 [1.0-6.3] with n cases = 13, n controls = 21), but not the other pesticides. CONCLUSIONS: Our small study provides a robust assessment of fetal exposure. Fenitrothion's established antiandrogenic activities provide biologic plausibility for our observations. Further studies are needed to confirm this hypothesis.


Subject(s)
Hypospadias , Pesticides , Infant, Newborn , Infant , Child , Humans , Male , Female , Pregnancy , Hypospadias/chemically induced , Hypospadias/epidemiology , Meconium/chemistry , Pesticides/toxicity , Maternal Exposure/adverse effects , Case-Control Studies , Tandem Mass Spectrometry , Fenitrothion/analysis , France/epidemiology
3.
Article in English | MEDLINE | ID: mdl-36496457

ABSTRACT

BACKGROUND: France is one of the biggest users of pesticides in Europe and exposure to pesticides is a current concern, especially when it occurs early in life. OBJECTIVE: The aim of this study was to assess the exposure of pregnant women in Brittany (western France) with high pesticide use. METHODS: The pesticides were selected according to agricultural practices. Forty pesticides or metabolites were measured in urine samples collected in 2004 from 296 pregnant women in Brittany. The samples were analyzed by ultra-high performance liquid chromatography (UHPLC) coupled to high resolution mass spectrometry (HRMS) after a solid phase extraction (SPE) step. RESULTS: Twenty seven pesticides were detected: the most frequently detected were the metabolites of organophosphate and pyrethroid insecticides (>89%) and several herbicides (phenoxypropionic acid derivatives and fluazifop >60%). Organophosphate and pyrethroid metabolites were also quantified in highest levels with maximum values of 590 µg/l for dimethylphosphate and 5.4 µg/l for 3- phenoxybenzoic acid. For the other parent compounds, such as prochloraz, bromoxynil and procymidone, they were also detected in 10-29% of the samples. SIGNIFICANCE: Our results are consistent with pesticide use at the time of collection. The median concentrations of organophosphorus and pyrethroids were of the same order of magnitude as those reported in other countries. Herbicides and fungicides (fluazifop-p-butyl, bromoxynil, and prochloraz) were measured for the first time in this biomonitoring study, showing the usefulness of measuring widely used pesticides locally to improve knowledge of exposure. IMPACT: The objective of this study is to assess the exposure of pregnant women in a region of Europe with high pesticide use.

4.
MethodsX ; 9: 101671, 2022.
Article in English | MEDLINE | ID: mdl-35392106

ABSTRACT

In order to develop a tiered approach to identify relevant biomarkers and matrices for assessing pesticide exposure in residents living close to vineyards, five priority pesticides (boscalid, captan, folpel, mancozeb and tebuconazole) and their metabolites were analyzed in urine and hair samples from the biobank of a French national prevalence study conducted between 2014 and 2016. To do this, several analytical methods based on gas chromatography coupled with tandem mass spectrometry (GC/MS/MS) were developed by relying on the expertise of the laboratory and the scientific literature, in particular on a paper describing the use of gas chromatography-mass spectrometry for the determination in human urine samples of ethylene thiourea (ETU), a metabolite of mancozeb, after a supported liquid extraction followed by a derivatization step [1]. The main adaptations carried out as part of this study concerned:•the determination of ethylene urea (EU), another metabolite of mancozeb, at the same time as ETU in urine samples•the determination of all substances of interest including boscalid, EU and ETU, folpel and one of its metabolite (phthalimide), tebuconazole and one of its metabolite (hydroxytebuconazole), and tetrahydrophthalimide (metabolite of captan) in organic hair extracts by GC/MS/MS after a derivatization step.

5.
Environ Int ; 159: 107013, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34890902

ABSTRACT

Biomonitoring can be relevant for assessing pesticides exposure of residents living close to vineyards (LCTV). However, because xenobiotics are generally present at low levels in human biological matrices and the sources of pesticide exposure are multiple, several challenges need to be overcome to reliably assess exposure in residents LCTV. This includes particularly identifying the most appropriate exposure biomarkers, the biological matrices in which they should be measured, and analytical methods that are sufficiently sensitive and specific to quantify them. The aim of the present study was to develop a tiered approach to identify relevant biomarkers and matrices for assessing pesticide exposure in residents LCTV. We used samples from a biobank for 121 adults and children included in a national prevalence study conducted between 2014 and 2016 who lived near or far from vineyards. We analyzed five priority pesticides (folpet, mancozeb, tebuconazole, glyphosate, and copper) and their metabolites in urine and hair samples. We identified relevant biomarkers according to three criteria related to: i) the detection frequency of those pesticides and metabolites in urine and hair, ii) the difference in concentrations depending on residence proximity to vineyards and, iii) the influence of other environmental and occupational exposure sources on pesticide levels. This tiered approach helped us to identify three relevant metabolites (two metabolites of folpet and one of tebuconazole) that were quantified in urine, tended to be higher in residents LCTV than in controls, and were not significantly influenced by occupational, dietary, or household sources of pesticide exposure. Our approach also helped us to identify the most appropriate measurement strategies (biological matrices, analytical methods) to assess pesticide exposure in residents LCTV. The approach developed here was a prerequisite step for guiding a large-scale epidemiological study aimed at comprehensively measuring pesticides exposures in French residents LCTV with a view to developing appropriate prevention strategies.


Subject(s)
Pesticides , Adult , Biological Monitoring , Biomarkers , Child , Environmental Exposure/analysis , Farms , Humans , Pesticides/analysis
6.
Front Pediatr ; 9: 640064, 2021.
Article in English | MEDLINE | ID: mdl-34150682

ABSTRACT

Background: Hypospadias is a male congenital malformation that occurs in ~2 of 1,000 births. The association between hypospadias and fetal exposure to environmental chemicals has been studied, but the results are inconsistent. Although several petroleum and chlorinated solvents are suspected to have teratogenic effects, their role in the occurrence of hypospadias has been little studied and never using biomarkers of exposure. We aimed to evaluate the association between fetal exposure to petroleum and chlorinated solvents measured in meconium and the occurrence of hypospadias. Methods: We conducted a pilot case-control study in the maternity of the University Hospital of Rennes (France). Eleven cases of hypospadias and 46 controls were recruited between October 2012 and January 2014. Data from hospital records and maternal self-reported questionnaires, including socio-demographic characteristics and occupational and non-occupational exposure to chemicals, were collected. Meconium samples were collected using a standardized protocol. Levels of petroleum solvents (toluene, benzene, ethylbenzene, and p, m, and o xylene), certain metabolites (mandelic acid, hippuric acid, methylhippuric acid, S-phenylmercapturic acid, S-benzylmercapturic acid, and phenylglyoxylic acid), and two chlorinated solvents (trichloroethylene and tetrachloroethylene) were measured in meconium by gas and liquid chromatography, both coupled to tandem mass spectrometry. Associations between the concentration of each chemical and the occurrence of hypospadias were analyzed using exact logistic regressions adjusted for maternal age, educational level, pre-pregnancy body mass index, and alcohol, and tobacco consumption during pregnancy. Results are presented with odds ratios (ORs) and their 95% confidence intervals (CIs). Results: Quantification rates for petroleum and chlorinated solvents or metabolites ranged from 2.2% (for methylhippuric acid) to 77.1% (for trichloroethylene) of the meconium samples. We found a significant association between the quantification of phenylglyoxylic acid (metabolite of styrene and ethylbenzene) in the meconium and a higher risk of hypospadias (OR = 14.2, 95% CI [2.5-138.7]). The risk of hypospadias was non-significantly elevated for most of the other solvents and metabolites. Conclusion: This exploratory study, on a limited number of cases, suggests an association between petroleum solvents and hypospadias. Additional studies are needed to confirm these results and identify the determinants for the presence of these solvents in meconium.

7.
Indoor Air ; 31(1): 156-169, 2021 01.
Article in English | MEDLINE | ID: mdl-33439520

ABSTRACT

The indoor environmental quality in classrooms can largely affect children's daily exposure to indoor chemicals in schools. To date, there has not been a comprehensive study of the concentrations of semivolatile organic compounds (SVOCs) in French schools. Therefore, the French Observatory for Indoor Air Quality (OQAI) performed a field study of SVOCs in 308 nurseries and elementary schools between June 2013 and June 2017. The concentrations of 52 SVOCs, including phthalates, polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), synthetic musks, and pesticides, were measured in air and settled dust (40 SVOCs in both air and dust, 12 in either air or dust). The results showed that phthalates had the highest concentrations among the SVOCs in both the air and dust. Other SVOCs, including tributyl phosphate, fluorene, phenanthrene, gamma-hexachlorocyclohexane (gamma-HCH, lindane), galaxolide, and tonalide, also showed high concentrations in both the air and dust. Theoretical equations were developed to estimate the SVOC partitioning between the air and settled dust from either the octanol/air partition coefficient or the boiling point of the SVOCs. The regression constants of the equations were determined using the data set of the present study for phthalates and PAHs.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Dust/analysis , Schools , Volatile Organic Compounds/analysis , Environmental Monitoring , Housing , Humans , Organophosphates , Pesticides/analysis , Phthalic Acids , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis
8.
Article in English | MEDLINE | ID: mdl-32942622

ABSTRACT

We aimed to identify high-priority organophosphorus flame retardants for action and research. We thus critically reviewed literature between 2000 and 2019 investigating organophosphorus flame retardants' presence indoors and human exposure in Europe, as well as epidemiological evidence of human effects. The most concentrated compounds indoors were tris(2-butoxyethyl)phosphate (TBOEP), tris(1-chloro-2-propyl)phosphate (TCIPP), tris(2,3-dichloropropyl)phosphate (TDCIPP). TBOEP and TCIPP were the most consistently detected compounds in humans' urine, hair or breast milk as well as tris (butyl) phosphate (TNBP) and tris (phenyl) phosphate (TPHP). Notably, epidemiological evidence concerned reprotoxicity, neurotoxicity, respiratory effects and eczema risk for TDCIPP, eczema increase for TBOEP, and neurodevelopmental outcomes for Isopropylated triarylphosphate isomers (ITPs). Given the ubiquitous presence indoors and the prevalence of exposure, the growing health concern seems justified. TDCIPP and TPHP seem to be of particular concern due to a high prevalence of exposure and epidemiological evidence. TBOEP and TNBP require epidemiological studies regarding outcomes other than respiratory or dermal ones.


Subject(s)
Environmental Exposure , Flame Retardants , Adult , Air Pollution, Indoor , Child , Child, Preschool , Dust/analysis , Environmental Monitoring , Europe , Female , Flame Retardants/analysis , Flame Retardants/toxicity , Humans , Infant, Newborn , Male , Organophosphates , Organophosphorus Compounds/analysis , Pregnancy , Sperm Motility
9.
J Chromatogr A ; 1615: 460768, 2020 Mar 29.
Article in English | MEDLINE | ID: mdl-31889518

ABSTRACT

An original multiresidue method based on thermal extraction (TE) and gas chromatography/tandem mass spectrometry (GC/MS/MS) was developed to simultaneously quantify, from a very small amount of sample (a few milligrams), a wide range of concerning SVOCs, including polycyclic musks, organochlorines (OCs), organophosphates (OPs), oxadiazolones, polycyclic aromatic hydrocarbons (PAHs), polybromodiphenylethers (PBDEs), polychlorobiphenyls (PCBs), phthalates and pyrethroids, in indoor settled dust. Method limits of quantification (LOQs) ranged from 5 ng g-1 for PCBs, oxadiazon, 4,4'-DDE and 4,4'-DDT to 2000 ng g-1 for DEHP for a 2 mg sample of sieved dust. The proposed method was successfully validated in terms of accuracy and precision via replicate analysis of four different standard reference materials (SRMs 1649b (Urban Dust), 2585 (Organic Contaminants in House Dust), 2786 and 2787 (Fine Atmospheric Particulate Matter)) supplied by the National Institute of Standards and Technology (NIST) and was applied to five real indoor settled dust samples collected in French schools. In addition, its performance was compared to that of a previously published method based on pressurized liquid extraction (PLE) and GC/MS/MS. The different results obtained demonstrate the advantages of the proposed method over conventional methods and illustrate its two main features: i) its ease of use and very rapid implementation in only three steps (sieving, weighing and analysis), which make it particularly appropriate for environmental monitoring programs and large-scale studies, and ii) its ability to precisely and accurately quantify a wide range of SVOCs from trace (a few ng g-1) to highly concentrated (several mg g-1) compounds from only 2 mg of sieved dust.


Subject(s)
Air Pollution, Indoor/analysis , Dust/analysis , Environmental Monitoring/methods , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Organophosphates/analysis , Phthalic Acids/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis
10.
Sci Total Environ ; 664: 605-615, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30763841

ABSTRACT

In intensive livestock areas, veterinary pharmaceutical residues (VPRs) can occur in water resources, but also in tap water because treatment processes are not designed to remove these contaminants. The main objective of this study is to assess the occurrence of VPRs in water resources and tap waters in Brittany. As several identical compounds are used in both veterinary and human medicine, a toolbox (stanols and pharmaceuticals) is used to help determine the origin of contamination in the case of mixed-use molecules. Water resources samples were collected from 25 sites (23 surface waters and two groundwaters) used for tap water production and located in watersheds considered as sensitive due to intensive husbandry activities. Samples were also taken at 23 corresponding tap water sites. A list of 38 VPRs of interest was analyzed. In water resources, at least one VPR was quantified in 32% of the samples. 17 different VPRs were quantified, including antibiotics, antiparasitic drugs and anti-inflammatory drugs. Concentration levels ranged between 5 ng/L and 2946 ng/L. Mixed-use pharmaceuticals were quantified in twelve samples of water resources and among these samples nine had a mixed overall fecal contamination. In the context of this large-scale study, it appeared difficult to determine precisely the factors impacting the occurrence of VPRs. VPRs were quantified in 20% of the tap water samples. Twelve VPRs were quantified, including ten compounds exclusively used in veterinary medicine and two mixed-use compounds. Concentration levels are inferior to 40 ng/L for all compounds, with the exception of the antibiotic florfenicol which was quantified at 159 ng/L and 211 ng/L. The population of Brittany may therefore be exposed to these contaminants through tap water. These observations should be put into perspective with the detection frequencies per compound which are all below 10% in both water resources and tap water.


Subject(s)
Animal Husbandry , Environmental Monitoring , Veterinary Drugs/analysis , Water Pollutants, Chemical/analysis , Animals , Drinking Water/chemistry , France , Groundwater/chemistry , Humans , Livestock , Pharmaceutical Preparations , Water Resources , Water Supply/statistics & numerical data
11.
Sci Total Environ ; 650(Pt 2): 2742-2750, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30373052

ABSTRACT

Semi-volatile organic compounds (SVOCs) are present in the gas phase, particulate phase and settled dust in the indoor environment, resulting in human exposure through different pathways. Sometimes, SVOCs are only measured in a single phase because of practical and/or financial constraints. A probabilistic method proposed by Wei et al. for the prediction of the SVOC concentration in the gas phase from the SVOC concentration in the particulate phase was extended to model the equilibrium SVOC concentrations in both the gas and particulate phases from the SVOC concentration measured in settled dust. This approach, based on the theory of SVOC partitioning among the gas phase, particulate phase, and settled dust incorporating Monte Carlo simulation, was validated using measured data from the literature and applied to the prediction of the concentrations of 48 SVOCs in both the gas and particulate phases in 3.6 million French dwellings where at least one child aged 6 months to 6 years lived. The median gas-phase concentration of 15 SVOCs, i.e., 5 phthalates, 2 organochlorine pesticides, 4 polycyclic aromatic hydrocarbons (PAHs), 2 synthetic musks, dichlorvos, and tributyl phosphate, was found to be higher than 1 ng/m3. The median concentration of 5 phthalates in the particulate phase was higher than 1 ng/m3. The impacts of some physical parameters, such as the molar mass and boiling point, on the SVOC partitioning among the different phases were quantified. The partitioning depends on the activity coefficient, vapor pressure at the boiling point, entropy of evaporation of the SVOCs, and the fraction of organic matter in particles. Thus, the partitioning may differ from one chemical family to another. The empirical equations based on regressions allow quick estimation of SVOC partitioning among the gas phase, particulate phase, and settled dust from the molar mass and boiling point.

12.
Sci Total Environ ; 642: 168-179, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-29894876

ABSTRACT

In addition to being influenced by the environment, the indoor air pollution in hospitals may be associated with specific compounds emitted from various products used, health care activities and building materials. This study has enabled assessment of the chemical and microbiological concentrations of indoor air in two French hospitals. Based on an integrated approach, the methodology defined aims to measure concentrations of a wide range of chemical compounds (>50 volatile and semi-volatile organic compounds), particle concentrations (PM10 and PM2.5), microorganisms (fungi, bacteria and viruses) and ambient parameters (temperature, relative humidity, pressure and carbon dioxide). Chemical and microbiological air concentrations were measured during two campaigns (winter and summer) and across seven rooms (for spatial variability). The results have shown that indoor air contains a complex mixture of chemical, physical and microbiological compounds. Concentrations in the same order of magnitude were found in both hospitals. Compared to dwelling indoor air, our study shows low, at least equivalent, contamination for non-hospital specific parameters (aldehydes, limonene, phthalates, aromatic hydrocarbons), which is related to ventilation efficiency. Chemical compounds retrieved at the highest concentration and frequencies are due to healthcare activities, for example alcohol - most commonly ethanol - and hand rubbing (median concentration: ethanol 245.7 µg/m3 and isopropanol 13.6 µg/m3); toluene and staining in parasitology (highest median concentration in Nancy laboratory: 2.1 µg/m3)).


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Hospitals , Air Pollution, Indoor/statistics & numerical data , France , Ventilation , Volatile Organic Compounds/analysis
13.
Environ Int ; 117: 22-32, 2018 08.
Article in English | MEDLINE | ID: mdl-29705548

ABSTRACT

BACKGROUND: The toxic effects of environmental exposure to chemicals are increasingly being studied and confirmed, notably for semivolatile organic compounds (SVOCs). These are found in many products and housing materials, from which they are emitted to indoor air, settled dust and other surfaces. OBJECTIVES: The objective of this work is to assess the human health risk posed by residential indoor exposure to 32 SVOCs, assessed in previous nationwide studies. METHODS: A chemical-by-chemical risk assessment, using a hazard quotient (HQ) or excess risk (ER) method, was supplemented by a cumulative risk assessment (CRA). For CRA, a hazard index (HI) method, as well as higher tier approaches using relative potency factors (RPFs) or toxic equivalency factors (TEFs) were used for the following endpoints: neurotoxicity, reproductive toxicity, genotoxicity and immunotoxicity. RESULTS: HQs were above 1 for 50% of French children from birth to 2 years for BDE 47, and for 5% of children for lindane and dibutyl phthalate (DBP). Corresponding hazards are reprotoxic for BDE 47 and DBP, and immunotoxic for lindane. The CRA approach provided additional information of reprotoxic risks (HI > 1) that may occur for 95% of children and for 5% of the offspring for pregnant women's exposure. The SVOCs contributing most to these risks were PCB 101 and 118, BDE 47, and DBP. The higher tier CRA approaches showed that exposure to dwellings' SVOC mixtures were of concern for 95% of children for neurotoxic compounds having effects linked with neuronal death. To a lesser extent, effects mediated by the aryl hydrocarbon receptor (AhR) or by a decrease in testosterone levels may concern 5% of children and adults. Lastly, unacceptable immunotoxic risk related to exposure to 8 indoor PCBs was also observed for 5% of children. CONCLUSIONS: In view of uncertainties related to compounds' toxicity for humans, these results justify the implementation of preventive measures, as well as the production of more standardized and comprehensive toxicological data for some compounds.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor , Environmental Exposure , Maternal Exposure/statistics & numerical data , Volatile Organic Compounds/analysis , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Child , Child, Preschool , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Female , France/epidemiology , Humans , Infant , Infant, Newborn , Risk Assessment
14.
J Hazard Mater ; 352: 215-227, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29621676

ABSTRACT

Many semi-volatile organic compounds (SVOCs), suspected of reprotoxic, neurotoxic or carcinogenic effects, were measured in indoor settled dust. Dust ingestion is a non-negligible pathway of exposure to some of these SVOCs, and an accurate knowledge of the real exposure is necessary for a better evaluation of health risks. To this end, the bioaccessibility of SVOCs in dust needs to be considered. In the present work, bioaccessibility measurement methods, SVOCs' oral bioaccessibility data and influencing factors were reviewed. SVOC bioaccessibilities (%) ranged from 11 to 94, 8 to 100, 3 to 92, 1 to 81, 6 to 52, and 2 to 17, for brominated flame retardants, organophosphorus flame retardants, polychlorobiphenyls, phthalates, pesticides and polycyclic aromatic hydrocarbons, respectively. Measurements method produced varying results depending on the inclusion of food and/or sink in the model. Characteristics of dust, e.g., organic matter content and particle size, also influenced bioaccessibility data. Last, results were influenced by SVOC properties, such as octanol/water partition coefficient and migration pathway into dust. Factors related to dust and SVOCs could be used in prediction models. To this end, more bioaccessibility studies covering more substances should be performed, using methods that are harmonized and validated by comparison to in-vivo studies.


Subject(s)
Air Pollution, Indoor/analysis , Dust/analysis , Food Contamination/analysis , Volatile Organic Compounds/analysis , Biological Availability , Eating , Environmental Monitoring/methods , Humans
15.
Environ Int ; 109: 81-88, 2017 12.
Article in English | MEDLINE | ID: mdl-28950160

ABSTRACT

Multiple chemicals are emitted in residential accommodation. Aggregate Daily Doses (ADD) (ng/kg-bw/d) were estimated for 32 semivolatile organic compounds (SVOCs) of different chemical families that are frequently detected in French dwellings in both air and settled dust. Daily doses were determined using steady-state models for the population, categorized into 11 age groups covering birth to age 30. Three routes of exposure were taken into account: dust ingestion, inhalation (gaseous and particulate phases) and dermal contact with the gaseous phase of air. Contamination levels were preferentially retrieved from large, nationwide representative datasets. A two-dimensional probabilistic approach was used to assess parametric uncertainty and identify the most influential factors. For children aged 2 to 3years, ADD estimates spanned orders of magnitude, with median values ranging from 8.7pg/kg-bw/d for 2,2',3,4,4'-pentabromodiphenylether (BDE 85) to 1.3µg/kg-bw/d for di-isobutyl phthalate (DiBP). Inhalation, ingestion and dermal pathway contributed at varying levels, and depending on compound, air was the dominant medium for 28 of the 32 compounds (either by inhalation or dermal contact). Indoor exposure estimate variance was mainly driven by indoor contamination variability, and secondarily by uncertainty in physical and chemical parameters. These findings lend support to the call for cumulative risk assessment of indoor SVOCs.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/adverse effects , Organic Chemicals/analysis , Adolescent , Adult , Child , Child, Preschool , Dibutyl Phthalate/analogs & derivatives , Dibutyl Phthalate/analysis , Environmental Exposure , Female , France , Housing , Humans , Infant , Infant, Newborn , Male , Young Adult
16.
Environ Int ; 102: 106-113, 2017 May.
Article in English | MEDLINE | ID: mdl-28249739

ABSTRACT

Recent research has demonstrated the importance of dermal exposure for some semivolatile organic compounds (SVOCs) present in the gas phase of indoor air. Though models for estimating dermal intake from gaseous SVOCs exist, their predictions can be subject to variations in input parameters, which can lead to large variation in exposure estimations. In this sensitivity analysis for a steady state model, we aimed to assess these variations and their determinants using probabilistic Monte Carlo sampling for 8 SVOCs from different chemical families: phthalates, bisphenols, polycyclic aromatic hydrocarbons (PAHs), organophosphorus (OPs), organochlorines (OCs), synthetic musks, polychlorinated biphenyls (PCBs) and polybromodiphenylethers (PBDEs). Indoor SVOC concentrations were found to be the most influential parameters. Both Henry's law constant (H) and octanol/water partition coefficient (Kow) uncertainty also had significant influence. While exposure media properties such as volume fraction of organic matter in the particle phase (fom-part), particle density (ρpart), concentration ([TSP]) and transport coefficient (É£d) had a slight influence for some compounds, human parameters such as body weight (W), body surface area (A) and daily exposure (t) make a marginal or null contribution to the variance of dermal intake for a given age group. Inclusion of a parameter sensitivity analysis appears essential to reporting uncertainties in dermal exposure assessment.


Subject(s)
Air Pollutants/metabolism , Air Pollution, Indoor/analysis , Gases/metabolism , Skin Absorption , Volatile Organic Compounds/metabolism , Humans , Models, Theoretical , Monte Carlo Method
17.
Sci Total Environ ; 576: 319-325, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27788447

ABSTRACT

Semi-volatile organic compounds (SVOCs) partition indoors between the gas phase, airborne particles, settled dust, and other surfaces. Unknown concentrations of SVOCs in the gas phase (Cg) can be predicted from their measured concentrations in airborne particles. In previous studies, the prediction of Cg depended largely on choosing a specific equation for the calculation of the particle/gas partition coefficient. Moreover, the prediction of Cg is frequently performed at a reference temperature rather than the real indoor temperature. In this paper, a probabilistic approach based on Monte Carlo simulation was developed to predict the distribution of SVOCs' Cg from their concentrations in airborne particles at the target indoor temperature. Moreover, the distribution of the particle/gas partition coefficient of each SVOC at the target temperature was used. The approach was validated using two measured datasets in the literature: the predicted Cg from concentrations measured in airborne particles and the measured Cg were generally of the same order of magnitude. The distributions of the Cg of 66 SVOCs in the French housing stock were then predicted. The SVOCs with the highest median Cg, ranging from 1ng/m3 to >100ng/m3, included 8 phthalates (DEP, DiBP, DBP, DEHP, BBP, DMP, DiNP, and DMEP), 4 polycyclic aromatic hydrocarbons (fluorene, phenanthrene, fluoranthene, and anthracene), 2 alkylphenols (4-tert-butylphenol and 4-tert-octylphenol), 2 synthetic musks (galaxolide and tonalide), tributyl phosphate, and heptachlor. The nationwide, representative, predicted Cg values of SVOCs are frequently of the same order of magnitude in Europe and North America, whereas these Cg values in Chinese and Indian dwellings and the Cg of polybrominated diphenyl ethers in U.S. dwellings are generally higher.

18.
Sci Total Environ ; 563-564: 506-12, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27152992

ABSTRACT

The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25°C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R>0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6°C, while it increased by up to 750% when the indoor temperature increased from 15°C to 30°C.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Gases/analysis , Particulate Matter/analysis , Volatile Organic Compounds/analysis , Models, Theoretical , Temperature
19.
Chemosphere ; 153: 212-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27016817

ABSTRACT

Particle/gas and dust/gas partition coefficients (Kp and Kd) are two key parameters that address the partitioning of semi-volatile organic compounds (SVOCs) between gas-phase, airborne particles, and settled dust in indoor environment. A number of empirical equations to calculate the values of Kp and Kd have been reported in the literature. Therefore, the difficulty lies in the selection of a specific empirical equation in a given situation. In this study, we retrieved from the literature 38 empirical equations for calculating Kp and Kd values from the SVOC saturation vapor pressure and octanol/air partition coefficient. These values were calculated for 72 SVOCs: 9 phthalates, 9 polybrominated diphenyl ethers (PBDEs), 11 polychlorinated biphenyls (PCBs), 22 biocides, 14 polycyclic aromatic hydrocarbons (PAHs), 3 alkylphenols, 2 synthetic musks, tributylphosphate, and bisphenol A. The mean and median values of log10Kp or log10Kd for most SVOCs were of the same order of magnitude. The distribution of log10Kp values was fitted to either a normal distribution (for 27 SVOCs) or a log-normal distribution (for 45 SVOCs). This work provides a reference distribution of the log10Kp for 72 SVOCs, and its use may reduce the bias associated with the selection of a specific value or equation.


Subject(s)
Air Pollution, Indoor/analysis , Halogenated Diphenyl Ethers/analysis , Particulate Matter/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Volatile Organic Compounds/analysis , Environment , Phthalic Acids/analysis
20.
Neurotoxicology ; 54: 81-88, 2016 05.
Article in English | MEDLINE | ID: mdl-26955917

ABSTRACT

Mixtures of polybrominated diphenyl ethers (PBDEs) are present in indoor environments. Studies of the developmental effects of exposure to these chemicals in large prospective mother-child cohorts are required, with data on prenatal exposure and long-term follow-up of the children. We aimed to investigate the relationship between prenatal and childhood exposure to PBDEs and neurodevelopment at the age of six years. We determined the levels of PBDEs and other neurotoxicants in cord blood and dust collected from the homes of children for 246 families included in the PELAGIE mother-child cohort in France. We assessed two cognitive domains of the six-year-old children using the Wechsler Intelligence Scale for Children-IV. Verbal comprehension scores were lower in children from homes with higher concentrations of BDE99 (ßDetects

Subject(s)
Developmental Disabilities/chemically induced , Halogenated Diphenyl Ethers/adverse effects , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/physiopathology , Adult , Child , Cohort Studies , Developmental Disabilities/blood , Female , Fetal Blood/drug effects , Halogenated Diphenyl Ethers/blood , Humans , Lipid Metabolism/drug effects , Male , Mother-Child Relations , Mothers/psychology , Neuropsychological Tests , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...